Inter-animal transforms as a guide to model-brain comparison

Abstract: To address the question of how to compare DNN model activations to brain data, we investigate
what transforms best describe similarity in neural activity in the same brain area between conspecifics. We expect
neural responses to be functionally highly similar within a species (since we expect findings to generalize across
animals). What kind of transform will make such similarity most evident? That is, under what kind of transform
are conspecifics’ neural responses highly similar to each other? Researchers often default to linear regression as
a reasonable transform class for measuring neural response similarity. We propose an improved transform class
that uses a generalized linear model (GLM) whose noise matches the approximately Poisson noise in the neural
data, and whose non-linear link function is akin to the activation function of a biological neuron. Incorporating
these biologically motivated constraints into the inter-animal transform class substantially improves similarity
scores compared to linear regression. We then build a DNN model of mouse visual cortex that swaps out ReLLU
activations for a more biologically plausible softplus activation function, combined with Poisson noise, to produce
activations that are more similar to neural responses. We find that a Poisson GLM whose link function exactly
matches the model activation function again yields the highest similarity scores between different randomly
seeded instances of our softplus models. This result gives mechanistic insight into why the best performing animal
transform class has a non-linear link as well as Poisson noise structure. Moreover, we show that our Poisson GLM
not only achieves higher similarity scores for the same layer between model instances, but also scores activations
in model layers that are physically far apart as highly dissimilar to each other. Finally, we estimate the number
of neurons and number of stimuli that would need to be recorded to accurately estimate inter-animal similarity.

Significance: How to assess similarity in neural responses between a DNN model and the brain is an important
methodological question for computational neuroscience. For example, deep convolutional neural networks
are now widely touted as the most accurate models so far of a number of neural systems, such as the primate
ventral visual stream and the mouse visual system. This conclusion is based on prior assumptions about how
to measure model accuracy, which in many cases simply involve linearly regressing neural responses on model
features. Is linear regression the most appropriate way to assess model-brain similarity, and more generally,
what would a good measure of model-brain similarity be?

To answer this question, we investigate empirically what type of mapping (linear or otherwise) is most apt
for predicting one animal’s neural responses based on a conspecific’s neural responses, and use that as our
measure of model-brain similarity (cf. Cao and Yamins, 2021). The inter-animal similarity score according
to this empirically validated transform is a kind of noise ceiling, i.e. the maximum level of similarity that any
computational model of that species can hope to attain, according to this transform.

Our work is of interest not only to computational neuroscientists, but also to systems neuroscientists, in three
ways. First, we provide evidence that the best transform class we've found so far depends on the neuronal
activation function, as well as the structure of the noise in the neuron’s spiking activity. As a result, more precisely
identifying the best transform class between animals could provide information about the activation functions and
noise characteristics of the neurons, and conversely, incorporating information from systems neuroscience about
the neural activation function can lead to a better estimate of the transform class. Second, accurately modeling
similarity and dissimilarity in neural responses between conspecifics is important for systems neuroscience, and our
nonlinear transform based on a Poisson GLM provides some guidance on how to measure inter-animal variability.
Third, we provide estimates of how much data (stimuli, neurons) would need to be collected to reliably estimate
the inter-animal variability according to a linear transform (and in the future will provide these estimates for
our non-linear transform, which is more sample efficient), thus providing guidance for future experimental work.

In overview, we show that on the mouse visual cortex Neuropixels recordings from the Allen Brain Observatory
Visual Coding Dataset (de Vries et al., 2020; Siegle et al., 2021), a Poisson GLM is the best transform class
between conspecifics (Fig. 1A). We design a more biologically accurate model of visual cortex (Fig. 1B) and
show that the same Poisson GLM achieves the highest same-layer similarity scores (Fig. 1C). For different
transform classes, we measure both same-layer and cross-layer similarity between models trained with different
weight initializations and data orderings and emphasize a second desirable property of a good transform class:
that it also preserves separability between distant layers (i.e. minimizes cross-layer similarity) (Fig. 1D). Lastly
we estimate the amount of data needed to accurately estimate inter-animal variability (Fig. 1E). Taken together,
our results encourage looking beyond linear mappings when comparing models to neuronal data and in particular
to consider transform classes which resemble the neuronal mechanism underlying the data.



A. Comparing animal transform classes. C. Comparing model transform classes. D. Similarity and separability.
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Figure 1: A Poisson GLM with a Softplus link function shows a substantial improvement in
transform similarity compared to linear mappings. A. A Poisson GLM using a link function based on
the Softplus activation function (dark blue bar, far left), combined with Yeo-Johnson scaling on the source
features, substantially outperforms Ridge regression in terms of inter-animal similarity scores. Three components
contribute to the higher scores. First, since neuronal spiking activity can be approximately modeled with a
Poisson distribution, incorporating this noise structure into the transform between animals improves its predictive
accuracy, especially for small datasets. Second, Yeo-Johnson scaling transforms the source features so that
they are approximately normally distributed. Neural responses tend to have skewed distributions, and skewed
predictors are often less effective when using linear regression or GLMs. Third, using a non-linear link function
such as the log link, softplus-based link, or Normal Cumulative Distribution Function (CDF), leads to better
results. B. We simulate a neuron’s output (spike counts) as the result of repeatedly sampling a stochastic process
in which the neuron spikes if its input exceeds the neuron’s threshold (dotted line). The total input to the neuron
is the aggregation of noisy inputs from thousands of other neurons, so we model it as a Gaussian variable. A
noisy input can sometimes exceed the neuron’s threshold and cause it to fire, even when the mean input is below
threshold (the unsaturated, fluctuation-driven regime, left of the dotted line). This simple model yields a sigmoid
activation function (the Normal CDF'). However, since the cortical neurons we measure are mostly unsaturated, we
can approximate their activation function with Softplus or ReLU, with Softplus providing a better approximation.
This motivates using the Softplus function not only as the link function in our GLM, but also as the activation
function in our models. We modify an Alexnet model of mouse visual cortex introduced in Nayebi et al., 2022 by
replacing ReLU with Softplus in each layer, and using the Softplus activation as the mean of a Poisson distribution
from which we sample the noisy activations. The model activations can thus be interpreted as the number of
occurrences (or spikes) in a given time period. C. A GLM whose functional form matches the mechanism that
generates the model’s activations achieves the highest transform similarity. The best performing transform class
for the models matches the best performing transform class for the animal data (see blue bar in Fig. 1A). D.
Same-layer and cross-layer similarity scores can typically be presented in a symmetric matrix and visualized as
a heatmap (top left). In the upper panel, we instead display the scores in a strip plot to highlight the differences
in numerical values of the entries in the upper triangular portion of the matrix. The darkest entries represent
same-layer similarities (i.e. entries on the matrix diagonal). Lighter colors represent cross-layer similarities, with
lighter shades corresponding to entries further away from the diagonal of the similarity matrix (layers that are
further apart from each other). The bottom panel shows the average value for all entries in the k-th diagonal of the
similarity matrix, for each value of k. Intuitively, a good transform class should score high on same-layer similarity,
i.e. the darkest dot should be as far right as possible. In assessing layer separability, we want the lighter dots to be
as far left as possible, while still being spaced apart. E. For any given transform class, we can quantify the effect
on similarity of subsampling the number of stimuli or units the transform class is trained on. We can fit a curve
to extrapolate performance as a function of number of model units and calibrate it against the animal curve to
estimate the number of neurons we’d need to record from to maximize the transform class’s performance. For linear
mappings, our estimates indicate we would require data for at least 500 stimuli and 500 reliable neurons for such
a goal. We expect these estimates to be lower for the best transform class, and we’ll report these numbers soon.



